В работе рассчитаны термодинамические характеристики процесса комплексообразования: $\Delta_r G^0$, $\Delta_r H^0$, $\Delta_r S^0$. При этом использованы классические уравнения химической термодинамики применительно к системам с участием полимерных соединений [19, 20].

		2.
Таблица 4 - Термодинамические характеристики процесса		NO TIDIT Dd ²⁺ n no zwoż opozo
таолина 4 - термодинамические характеристики процесса	і ооразования комплекс	за гготг-га в воднои среде

Система	Т, К	$\lg \! eta^0$	- $\Delta_{ m r} { m G}^0,$ кДж/моль	$\Delta_{ m r} { m H}^0$ кДж/моль	$\Delta_{ m r} { m S}^0$ Дж/моль \cdot К
	298	11,40	65,04	1288,4	
ПВП-Рd ²⁺	318	25,62	155,96		4541,7
	343	14,85	97,50	-898,5	- 2335,3

Как видно из данных, представленных в таблице 4, процесс комплексообразования хлорида палладия(II) с ПВП в интервале температур 298-343 К характеризуется отрицательными значениями энергии Гиббса, что свидетельствует о самопроизвольном протекании исследуемого процесса в направлении образования соединения ПВП- Pd^{2+} . Положительное значение изменения энтальпии ($\Delta_t H^0$) в интервале температур 298-318 К свидетельствует об эндотермическом характере образования поликомплекса, поэтому с ростом температуры в указанном интервале устойчивость последнего возрастает. А в интервале температур 318-343 К процесс комплексообразования сопровождается выделением теплоты (экзотермический процесс), в результате чего прочность полимерметаллического комплекса снижается с ростом температуры. Полученный факт неоднозначного влияния температуры на процесс комплексообразования, вероятно, обусловлен конформационными изменениями в структуре полимера - поливинилпирролидона, исследованными в работе [21, 22]. Авторами установлено, что конформационные изменения ПВП в водной среде сопровождаются экзо-эффектами, значения которых зависят от температуры и молекулярной массы полимера. Изменения значений энтропии связаны с разрушением сольватных оболочек лигандных групп ПВП и иона палладия, вытеснением молекул растворителя и образованием хелатных структур.

Таким образом, анализ полученных экспериментальных данных показывает, что в результате взаимодействия ПВП с ионами Pd^{2+} образуется координационное соединение состава 3:1, устойчивость которого зависит от ионной силы раствора, температуры. Термодинамические характеристики указывают на потенциальную возможность протекания исследуемого процесса в направлении образования полимерметаллического комплекса.

ЛИТЕРАТУРА

- [1] Benaglia M., Puglisi A., Cozzi F. Polymer supported organic catalysts // Chem. Rev. 2003. Vol. 103. P. 3401-3429.
- [2] Хартли Ф. Закрепленные металлокомплексы. Новое поколение катализаторов. Пер. с. англ. М.: Мир, 1989. 360 с.
- [3] Помогайло А.Д. Катализ иммобилизованными комплексами. М.: Наука, 1991. 448 с.
- [4] Бектуров Е.А., Кудайбергенов С.Е. Катализ полимерами. Алма-Ата: Наука, 1988. 184 с.
- [5] Химия привитых поверхностных соединений. Под ред. Г.В. Лисичкина. М.: Физматлит, 2003. 592 с.
- [6] Симанова С.А., Бурмистров Н.М., Афонин М.В. Химические превращения соединений палладия в сорбционных процессах // Рос. хим. ж. 2006. Т. L, \mathbb{N}_2 4. С. 19 25.
- [7] Никифорова Т.Е., Козлов В.А., Исляйкин М.К. Кислотно-основные взаимодействия и комплексообразование при извлечении катионов меди(II) из водных растворов целлюлозным сорбентом в присутствии поливинилпирролидона // Ж. физ. хим. − 2012. − Т. 86, № 12. − С. 1974-1984.
- [8] Брук Л.Г., Ошанина Й.В., Городской С.Н., Тёмкин О.Н. Окислительное карбонилирование и сопряжённые процессы с участием оксида углерода, катализируемые комплексами палладия // Рос. хим. ж. − 2006. Т. 50, № 4. С. 103-114.
- [9] Шупик А.Н., Калашникова И.С., Перченко В.Н. Строение и каталитические свойства комплексов полиэтиленимина и политриметиленимина с солями металлов VIII группы // Журн. физ. химии . 1984. Т. 58, № 6. С. 1313-1319.
 - [10] Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высшая школа, 1982. 320 с.
 - [11] Инцеди Я. Применение комплексов в аналитической химии. Пер. с англ. М.: Мир, 1979. 368 с.
- [12] Шарутин В.В., Сенчурин В.С., Шарутина О.К. Синтез и строение комплексов палладия, платины и золота: $[Ph_3PCH_2CH_2PPh_3]^{2+}$ $[PdCl_3DMSO]^{2-}$, $[Ph_3PCH_2CH_2PPh_3]^{2+}$ $[PtCl_6]^{2-}4DMSO$, $[Ph_3PCH_2CH_2PPh_3]^{2+}[AuCl_4]^{2-}$ и $[Ph_3PCH_2CH_2PPh_3]^{2+}[AuCl_2]^{2-}$ // Вестник ЮУрГУ, серия «Химия». 2011. Вып. 6, № 33, С. 37-46.
 - [13] Бьеррум Я. Образование аминов металлов в водном растворе. М.: Иностраннная литература, 1961. 274 с.
 - [14] Ергожин Е.Е., Менлигазиев Е.Ж. Полифункциональные ионообменники. Алма-Ата: Наука, 1986. 300 с.
- [15] Басоло Ф., Пирсон Р. Механизм неорганических реакций. Изучение комплексов металлов в растворе. М: Мир, 1973. 643 с.
- [16] Анисимов С.М., Никитина Е.И., Роднова А.П. Сб. «Методы анализа платиновых металлов, золота и серебра». М.: Металлургиздат, 1960. С. 151.
 - [17] Анисимов С.М., Помытов К.Л., Карбовская И.Е. Сб. «Методы анализа платиновых металлов, золота и